quinta-feira, 13 de fevereiro de 2020



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




  • Spin nuclear: para cada momento angular orbital do núcleo l e
spin s combinam para formar o momento angular total j. O momento angular total do núcleo I é, portanto, o vetor soma dos momentos angulares do núcleo:
 tal que 
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

  • Momento angular: O momento angular I possui todas as propriedades usuais do vector momento angular da Mecânica Quântica:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


  • O momento angular total I é usualmente referido como spin
nuclear e o correspondente número quântico de spin l é usado para descrever estados nucleares.
Estabilidade nuclear é relacionada ao número de nucleos que constituem o núcleo. Núcleos estáveis apenas ocorrem numa banda estreita no plano Z-N.
Todos os outros núcleos são instáveis e desintegram-se espontaneamente em vários modos.
Existem três modelos de núcleos atômicos: o Modelo da gota líquida, o Modelo do gás de fermi e o Modelo de camada. Cada modelo explica certas observações da propriedade nuclear. Nenhum modelo único explica todas as observações.[5]

Modelos nucleares[editar | editar código-fonte]

Existem dois tipos básicos de modelos nucleares simples. Corpo colectivo sem estados de partículas individuais. A gota de líquido. Modelo que é a base da fórmula semi-empirica de massa. Modelo de partícula individual com o núcleo em estados de energia discretos, por exemplo o gás de Fermi ou modelo de camadas/capas (concha).

Glossário[editar | editar código-fonte]

Terminologia[editar | editar código-fonte]

1 . Terminologia Nuclear: Existem diversos termos usados no campo da Física Nuclear que se deve compreender,
a. Nucleão ou Núcleo: Neutrões (Nêutrons) e protões (prótons) são encontrados no núcleo dum átomo e por essa razão são chamados colectivamente de nucleões. Um nucleão é definido como sendo uma partícula constituinte do núcleo, tanto um neutrão ou um protão.
b. Nuclídeo – Uma espécie de átomo caracterizada pela constituição do seu núcleo, o qual é especificado pelo sua massa atómica e o seu número atómico (Z), ou pelo seu número de protões (Z), número de neutrões (N), e conteúdo de energia. Uma listagem de todos os nuclídeos pode ser encontrada no ´´gráfico dos nuclídeos´´ a qual será apresentada numa lição mais tarde.
c. Isótopos – Isótopos são definidos como nuclídeos que têm o mesmo número de protões mas diferentes números de neutrões. Portanto, quaisquer nuclídeos que têm o mesmo número atómico (isto é, o mesmo elemento) massa diferentes números de massa são isótopos. Por exemplo, hidrogénio possui três isótopos, conhecidos como, Prótio, Deutério, Trítio. Dado que hidrogénio possui um protão, qualquer átomo de hidrogénio terá número atómico igual a 1. Contudo, números de massa atómica dos três isótopos são diferentes. Prótio (H – 1) tem número de massa 1 (um protão, sem neutrões), Deutério (D ou H – 2) tem o número de massa igual a 2 (1 protão, 1 neutrão), e Trítio (T, H – 3) tem número de massa 3 (1 protão, 2 neutrões).
2. Defeito de massa e energia de ligação: A massa do átomo provém quase inteiramente do núcleo. Se o núcleo pudesse ser decomposto em suas partes constituintes, isto é, protões e neutrões, poderia se concluir que a massa total do átomo é menor do que a soma das massas dos protões e neutrões individuais. Esta diferença na massa é conhecida como de feito de massa  , calculada para cada nuclídeo, usando a seguinte equação:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Onde  é o defeito de massa,
= número atómico,
 = massa do protão (1.00728 uma),
 = massa do neutrão (1,00867 uma);
 = massa do electrão (0,000548 uma);
 = número de massa;
 = massa atómica (a partir do gráfico dos nuclídeos);
 = massa do átomo de hidrogénio.
3. Energia de ligação: energia de ligação é a energia equivalente do defeito de massa, 1 uma = 931,478 MeV.
4Energia de ligação por nucleão: Se a energia de ligação total do núcleo é dividida pelo número total de nucleões no núcleo, obtém-se a energia de ligação por nucleão. Esta representa a energia média que deve ser fornecida de modo a remover um nucleão a partir do núcleo.
5Radioatividade (decaimento radioativo): a decomposição espontânea do núcleo para formar um núcleo diferente.
6. Marcação de data a partir de Radiocarbono (Obtensão de data a partir do Carbono – 14): um método para a marcação da idade madeira antiga ou roupa antiga na base do decaimento radiotivo do nuclídeo C – 14.
7. Traçador radioativo – um nuclídeo radioativo, introduzido no organismo para propósitos de diagnóstico, cuja trajetória pode ser seguida através do monitoramento da sua radioatividade.
8. A parte principal do reator – é a parte do reator nuclear onde ocorrem as reações de fissão nuclear.
9. REM (roentgen equivalent for man - equivalente Roentgen para o Homem) – uma unidade de dosagem de radiação que inclui ambos a energia da dose e a sua efetividade em causar danos biológicos.
10Ressonância – uma condição que ocorre quando mais de uma estrutura válida de Lewis pode ser escrita para uma molécula particular. A estrutura electrónica verdadeira é representada, não por qualquer uma das estruturas de Lewis, mas pela média de todos eles.
11Fissão nuclear : a cisão ou divisão de núcleos pesados em pelo menos dois núcleos pequenos, acompanhado da libertação de energia é chamado de fissão nuclear.
12Fusão nuclear – fusão é a reação entre núcleos que pode ser uma fonte de energia. Fusão é o ato de combinar ou ´´fundir´´ dois ou mais núcleos atómicos. Assim, a fusão constrói átomos. Fusão ocorre de foma natural no Sol e é a fonte da sua energia.




RELATIVIDADE SDCTIE GRACELI EM

energia de ligação (EB) é um termo normalmente utilizado quando se trabalha com a análise da estrutura eletrônica da matéria (estrutura de bandas), em especial na espectroscopia de elétrons. É comum também em outras, a exemplo na física do estado sólido.
Rigorosamente falando, a energia de ligação de um dado estado quântico eletrônico identificado por s é a diferença das energias totais do sistema quando este estado encontra-se desocupado e ocupado por um elétron, respectivamente. Assume-se que o sistema, mantida a ausência no primeiro caso, já tenha relaxado energeticamente de forma a acomodar-se à ausência do elétron no referido estado, assumindo a configuração que lhe permita então a menor energia total com o referido estado vazio. Sendo EsistemaN-1 a energia total do sistema com a ausência do elétron no referido estado [1] e EtotalN a energia total do sistema com o referido estado preenchido, ou seja, com N elétrons e em seu estado de equilíbrio termodinâmico, temos que:
EB = E N−1 sistema − ENtotal
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Em sólidos geralmente utiliza-se como referência para a medida da energia de ligação a energia de Fermi. Entretanto não é incomum encontrar-se dados sobre energias de ligação referidas à energia de nível de vácuo, ou, às vezes, à energia do topo da banda de valência, e certo cuidado deve ser tomado ao se utilizar valores obtidos da literatura.
Devido às dificuldades inerentes na determinação da energia total do sistema, costuma-se assumir aproximações práticas para a energia de ligação. A mais simples consiste em negligenciar a energia envolvida no processo de relaxação do sistema e assumir a energia de ligação como sendo o negativo da energia do estado a partir do qual o elétron é retirado. Esta aproximação, apesar de negligenciar mudanças nos orbitais atômicos do qual o elétron é removido bem como mudanças na distribuição eletrônica do cristal devido à presença de um íon positivo na rede e à ausência de um elétron, mostra-se muitas vezes útil, e é conhecida como aproximação de Koopman.[2]
Tabelas com as energias de ligações para os elementos e vários compostos destes podem ser encontradas na literatura.[3]




RELATIVIDADE SDCTIE GRACELI EM 

Um estado quântico é qualquer estado possível em que um sistema mecânico quântico possa se encontrar. Um estado quântico plenamente especificado pode ser descrito por um vetor de estado, por uma função de onda ou por um conjunto completo de números quânticos para um dado sistema. Vetores de estado quântico, na interpretação mais comum da mecânica quântica, não têm realidade física. O que tem significado físico são as probabilidades que podem ser calculadas a partir deles e não os vetores em si.[1] Ao estado quântico de menor energia possível dá-se o nome de estado quântico fundamental.
Na física quântica, o estado quântico se refere ao estado de um sistema isolado. Um estado quântico fornece uma distribuição de probabilidade para o valor de cada observável, ou seja, para o resultado de cada medida possível no sistema. O conhecimento do estado quântico juntamente com as regras para a evolução do sistema no tempo esgota tudo o que se pode prever sobre o comportamento do sistema.
Uma mistura de estados quânticos é novamente um estado quântico. Os estados quânticos que não podem ser escritos como uma mistura de outros estados são chamados estados quânticos puros, todos os outros estados são chamados de estados quânticos mistos.
Matematicamente, um estado quântico puro pode ser representado por um raio em um espaço de Hilbert sobre os números complexos.[2] O raio é um conjunto de vetores diferentes de zero diferindo apenas por um fator escalar complexo; qualquer um deles pode ser escolhido como um vetor de estado para representar o raio e, portanto, o estado. Um vetor unitário é normalmente escolhido, mas seu fator de fase pode ser escolhido livremente de qualquer maneira. No entanto, esses fatores são importantes quando vetores de estado são adicionados para formar uma superposição.
O espaço de Hilbert é uma generalização do espaço euclidiano comum [3] e contém todos os possíveis estados quânticos puros do sistema dado[4]. Se este espaço de Hilbert, por escolha de representação (essencialmente uma escolha de base correspondente a um conjunto completo de observáveis), é exibido como um espaço de função (um espaço de Hilbert por direito próprio), então os representantes são conhecidos como funções de onda.
Por exemplo, quando se trata do espectro de energia do elétron em um átomo de hidrogênio, os vetores de estado relevantes são identificados pelo número quântico principal n, o número quântico do momento angular l, o número quântico magnético m, e o spin z. Um caso mais complicado é dado (na notação bra-ket) pela parte de spin de um vetor de estado:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

que evolve para a superposição dos estados de spin conjunto para duas partículas com spin 12.
Um estado quântico misto corresponde a uma mistura probabilística de estados puros; no entanto, diferentes distribuições de estados puros podem gerar estados mistos equivalentes (isto é, fisicamente indistinguíveis). Os estados mistos são descritos pelas chamadas matrizes de densidade. Um estado puro também pode ser reformulado como uma matriz de densidade; desta forma, os estados puros podem ser representados como um subconjunto dos estados mistos mais gerais.
Por exemplo, se o spin de um elétron é medido em qualquer direção, por exemplo com um experimento de Stern-Gerlach, há dois resultados possíveis: para cima ou para baixo. O espaço de Hilbert para o spin do elétron é, portanto, bidimensional. Um estado puro aqui é representado por um vetor complexo bidimensional , com um comprimento de um; isto é, com
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde  e  são valores absolutos  e . Um estado misto, neste caso, tem a estrutura de uma matriz  isso é, hermitiano, positivo-definido, e tem o traço 1.
Antes que uma medição particular seja realizada em um sistema quântico, a teoria geralmente fornece apenas uma distribuição de probabilidade para o resultado, e a forma que essa distribuição assume é completamente determinada pelo estado quântico e pelo observável que descreve a medição. Essas distribuições de probabilidade surgem tanto para estados mistos quanto para estados puros: é impossível na mecânica quântica (ao contrário da mecânica clássica) preparar um estado no qual todas as propriedades do sistema sejam fixas e certas. Isso é exemplificado pelo princípio da incerteza e reflete uma diferença central entre a física clássica e a física quântica. Mesmo na teoria quântica, no entanto, para todo observável existem alguns estados que têm um valor exato e determinado para aquele observável.[3][5]